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ABSTRACT

The semi-batch esterification of propionic anhydride (PA) with 2-butanol (BT) in the 
presence of catalyst can be optimised using an optimal control strategy, which utilises 
the reactor temperature (TR) and feed (FR) flowrate. However, the opposing objective 
functions, which are maximum conversion (XM) and minimum process time (tf) in 
the autocatalytic esterification process, could complicate the optimisation strategy. 
Simultaneous optimisation of various objectives results in a multi-objective optimal control 
(MOOC) problem with numerous solutions known as non-dominated (ND) points. In this 
paper, control vector parameterisation (CVP) and hybrid strategy (HS) are utilised to form 
Pareto Front (PF) for two opposite targets, which are first to increase XM and secondly to 

reduce tf. Each ND point comprises variant 
optimal dynamic tracks of TR and FR, 
which results in various targets of XM and 
tf. These solutions provide numerous options 
for evaluating trade-offs and deciding on the 
most efficient operating strategy. It is found 
that the ND point in zone II can be selected 
as the trade-off of the optimal TR and FR 
in this study.

Keywords: Autocatalytic esterification, multi-
objective optimisation, optimal control, Pareto Front
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INTRODUCTION

The flavour and scent reagents for the food industry consume ester from the esterification 
reaction. Esterification is also an essential mechanism in medicine and cosmetics 
production (Zulkeflee et al., 2021). In industrial practice, the ester is a salience product 
from batch processes generally utilised to generate high quality and particular products in 
small quantities while controlling the waste products and raw material losses (Rohman et 
al., 2021a). The sec-butyl propionate ester (SBP) is synthesised via a reaction involving 
propionic anhydride (PA) and 2-butanol (BT). The reaction is catalysed by sulphuric acid 
(Zaldivar et al., 1993).

The mathematical models for optimising esterification conditions can contribute to 
decision-makers evaluating and executing a wide range of options with fewer attempts (De 
et al., 2019). The advantages of mathematical modelling include quickly identifying the 
characteristics and behaviour of the esterification process, low operating costs compared 
to experimental trials, and increased effectiveness. However, the mathematical modelling 
of semi-batch autocatalytic esterification working under an unsteady state system requires 
a composition of differential equation system with technical limitations. Furthermore, the 
autocatalytic esterification process contains intrinsic nonlinear equations. Thus, optimal 
control provides the solution for the most effective operating strategy for the optimum 
time-varying feed rate (FR) and reactor temperature (TR), ensuring that production and 
efficiency are maximised (Faust et al., 2019).

Presently, the Single Objective Optimisation (SOO) problem is used to solve the 
specific reference on the optimal control of the esterification between PA and BT for 
SBP ester synthesis (Rohman et al., 2021a). However, opposing target functions, namely 
maximum conversion (XM) and lowest process time (tf), exist in the esterification process 
optimisation, resulting in numerous compositions of optimum operating conditions. The 
optimal outcomes of the SOO problem cannot explain the relation between counteracting 
target functions and cannot give various sets of optimal profiles. Therefore, it is difficult to 
find a single solution that is best to meet all the targets. For this reason, the Multi-Objective 
Optimisation (MOO) approach is proposed. It is proven that by using a MOO approach, 
optimal strategy enhancement can provide a greater way of searching for performance trade-
offs arising from opposing targets for the ester production. Nevertheless, the application 
of MOO in the SBP esterification process has not been reported elsewhere. Furthermore, 
Multi-Objective Optimal Control (MOOC) in autocatalytic ester production can address 
the optimisation study void for the SBP ester production process.

This work addresses the MOOC issue in the esterification process between BT and 
PA. The most effective strategy of FR and TR is determined to minimise tf and maximise 
conversion, XM. Control vector parameterisation (CVP) and a hybrid strategy (HS) are 
utilised to execute the optimal control problem. The novelty of this research is that this 
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is the first time for the CVP and hybrid strategy to be applied as multi-objective optimal 
control of the semi-batch esterification process.

METHODOLOGY

Modelling of PA and BT Autocatalytic Esterification 

PA reacts with BT to yield SBP and propionic acid (PAc). The reaction occurs in a 
homogenously moderate exothermic reaction. The esterification reaction is catalysed by 
a strong acid, such as sulphuric acid. Without the sulphuric acid catalyst, the reaction rate 
between propionic acid and 2-butanol is negligible in the presence of propionic anhydride. 
Thus, the reaction follows second-order kinetics. According to Zaldivar et al. (1993), 
autocatalytic behaviour occurs when a catalyst is added. He discovered that in the existence 
of a catalyst, the PAc increases linearly towards the reaction rate. As PAc concentration 
increases, the reaction rate also rises, resulting in autocatalytic behaviour. However, PAc 
does not influence the reaction rate once a certain concentration level is attained. Due to 
the complexity of the numerous theoretical autocatalytic mechanism, a model is created 
based on the presumption of two catalysts (cat1, cat2). The former accelerates the second-
order reaction, and the latter produces a first-order reaction expression. Furthermore, the 
transformation of the catalysts was correlated with the acidity function and the concentration 
of BT. The reaction scheme for autocatalytic esterification propionic anhydride with 
2-butanol used in the present reactor modelling is presented as follows:
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The esterification reaction mechanisms are represented as the main reaction and reaction 
for catalyst formation (Zaldivar et al., 1993):

Main Reaction: 
Propionic Anhydride + 2-butanol → sec-butyl propionate + propionic acid
Reaction for catalyst formation: 
Catalyst 1 (Sulphuric Acid) → Catalyst 2 (Mono-butyl Sulphuric Acid)
The reaction rate of the main reaction can be written as Equation 1:  

     (1)

The reaction rate due to the formation of the second catalyst is also considered in 
Equation 2:

       (2)

These assumptions considered for the construction of the model are constant responding 
heat capacity, reaction mixture transport characteristics, effectual overall heat transfer 
coefficient, and density variation exist; negligible heat losses to the environment; even 
distribution TR and perfect mixing: heat aggregation in the reactor wall is diminished; there 
are no secondary heating effects, and there is no pressure effect; BT has been designated 
as the limiting reactant. The acidity function expression is an empirical model which is 
expressed as Equation 3 (Zaldivar et al., 1993): 

      (3)

Where p1-4 is the parameter of an acidity function.
The mass balance equations considered in the optimal control task can be assessed to 

denote the concentration profile in the autocatalytic esterification reaction. 
The mass balances for the semi-batch autocatalytic esterification reactor are presented 

by Equations (4-10) as shown in Equations 4 to 10 (Ubrich, 2000):

      (4)

          (5)

          (6)
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      (7)

          (8)

          (9)

          (10)

Concentrations of BT, PA, PAc, SBP, sulphuric acid and mono-butyl sulphuric acid are 
denoted as CA, CB, CC, CD, CCat1, and Ccat2, respectively. The FR, volume of solution, and 
TR within the reactor are denoted by Fo, V, and T, respectively. The initial values of CA, CB, 
CC, CD, Ccat1, Ccat2, and Vj are 3.4M, 0M, 0M, 0M, 1.02 × 10-2M, 0M, and 1L, respectively. 

Reaction rate constants follow Arrhenius law in Equation 11: 

        (11)

The reaction kinetics of this ester production have been demonstrated, and the value of 
kinetics information is elaborated in Table 1 from Zaldivar et al. (1993). k1, k2 and k3 are 
the reaction rate constant for the primary reaction. Meanwhile, k4 represents the reaction 
rate constant for the formation of the second catalyst.

Table 1 
Kinetic parameter equations (Zaldivar et al., 1993)

Subscript i Eai (J mol-1) Parameter pi k0i

1 80,478.64 2.002 × 10-1 5.36178 × 107 L mol-1 s-1

2 79,159.5 3.205 × 10-2 2.8074 × 1010 L2 mol-2 s-1

3 69,974.6 -21.3754 3.9480 × 1010 L mol-1 s-1

4 76,6172.2 12706 1.4031 × 108 L mol-1 s-1

Multi-Objective Optimal Control Technique

The optimal control method executed in this study is CVP. The AMIGO2 package 
developed by Balsa-Canto et al. (2016) using a MATLAB environment is utilised for the 
CVP method. The CVP approach algorithm in AMIGO2 is constructed from Vassiliadis et 
al.’s (1994) research. It is based on discretising the control profiles, whereas state profiles 
remain in continuous form (Azmi et al., 2021). Therefore, the ODE solver first calculates 
the differential equation. 
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The original optimal control equations are then re-formulated into a finite-dimensional 
Nonlinear Programming problem for solution searching by the static optimiser. An 
appropriate gradient search with the Nonlinear Programming based algorithm is also 
required.  The differential equations are solved at every iteration of the optimal solution 
searching. The inputs are frequently parameterised using a piecewise-constant (Rohman 
& Aziz, 2020; Azmi et al., 2020). The technique of parameterisation over finite elements 
(discretisation) and formation into Nonlinear Programming for CVP is depicted in Figure 
1. The CVP method’s standard procedure is described in Equations 12 to 15:

Problem:
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Step 1: The Lagrange Interpolating Polynomial is performed to discretise the control 
variables (CVs).

where

with

 (13)

Step 2: The discretised (CVs) shifted to the ODE model.where

with      (14)

Step 3: The discretised - optimisation problem using the CVP method is represented 
by Equation (10). 

with
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with with

           (15)

Step 4: In the updated dynamic model, 
the starting prediction for interval time ti 
and decision variables d are substituted, 
which are then assessed using Runga-
Kutta 4th order ODE solver.
Step 5: The hybrid strategy (HS) is 
utilised to compute the target and 
constraints in Equation 15 that are 
evaluated in Step 4 based on the d 
values. Steps 4–5 are reiterated until 
convergence is reached.

Figure 1. Optimal control method basic procedure: 
CVP

Hybrid Based Nonlinear Programming Solver. As a Nonlinear Programming solver, 
two phases of stochastic and deterministic-based optimisation are utilised. First, the 
stochastic-based Nonlinear Programming solver selects Differential Evolution (DE) (Storn 
and Price, 1997). In the meantime, sequential quadratic programming (SQP) is considered 
a deterministic Nonlinear Programming solver.  However, it is worth noting that SQP 
algorithms are tended to multimodal solutions and drag to a premature solution, especially 
if they start further away from the optimal solution. As a result, the stochastic method, such 
as differential evolution (DE), is an excellent strategy to resolve the optimisation problem 
because it can drift away from finding local solutions while locating the optimal solution 
in reasonable computation time (Storn and Price, 1997). On the other hand, the DE method 
usually leads to sublimate solutions at a high computational cost. As there is always a 
counterbalance between convergence rapidity and robustness in both DE and SQP approaches, 
the HS is established by merging the main parts of the DE and SQP method, leveraging their 
complementing properties (Banga et al., 2015; Rohman et al., 2016).

The HS is the work of Banga et al. (2014). It is composed of two phases. In the first 
phase, the DE solver sought the near-optimal solution. When a convergence criterion 
(SC1) based on the rapid searching distance for each repetition succeeded, the population 
searching iteration is switched to the 2nd phase. In the final phase, this solution is computed 
as a near-optimal searching point for the DE solver. Finally, when a convergence criterion 
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(SC2) is met to achieve a better optimal 
solution, the optimiser has reached the final 
convergence and ends the searching process. 
The SC1 and SC2 convergence values of 
0.02 and 10-6, respectively, are determined 
by empirical data (Storn and Price, 1997; 
Banga et al., 2015; Rohman et al., 2016). 
Figure 2 depicts the general steps of the HS 
method.

Multi-Objective Optimisation (MOO) 
Technique. The optimum results for MOOs 
are an arrangement of trade-off values 
known as the non-dominated (ND) set 
(Maiti el al., 2011). A set is ND set if it is 
impossible to enhance one target without 

Figure 2. General steps of the HS

Initial guess
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Convergence 
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Differential Evolution (DE)
Stochastic NLP

Convergence 
criterion 2

Optimal 
solution

NO
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loosening the other’s value; the ND set is the most optimum solution for all target functions. 
The MOO is addressed at each repetition in this method to provide an ND set. The PF and 
possible counterbalance between target functions can be constructed by updating a set of 
discontinuous points and asserting ND points obtained from numerous runs. 

The ε-constraint approach is one of the MOO techniques studied. There is no 
accumulation in the single target function in the ε-constraint technique; the HS optimiser 
solves the first target. The second target is a constraint using convergence’s tolerance 
values ε. The ND points on the PF are updated by gradually changing the ε for multiple 
runs (Rohman et al., 2016).  Therefore, the problem can be written as Equation 16:

Subject to

     (16)

The ε is progressively changed in multiple runs to provide the optimal points on the 
PF (Rohman et al., 2016). For each optimiser run, HS is utilised for the optimal solution 
searching.

Problem Optimisation Formulation. The decision variable is the piecewise constants 
of TR and FR. The catalyst, reactant, and product concentrations are regarded as state 
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variables, and their values are demonstrated as process dynamics for the semi-batch course. 
As a simplified process model, the catalysed esterification process equations are considered. 
It only requires the state’s differential Equations 4 to 10. This model states optimal profiles 
of FR and TR, which are employed to accomplish the reactor’s target performance. The 
bounds are specified based on the TR’s range capacity (303K- 343K) and pump flow rate 
(0 - 5 x 10-4 L/s), respectively. The total process time is made up of six intervals of time 
∆t, which are counted as free final time. As a result, the length of the interval time, ∆t, is 
also optimised, with a range of 10min–30min.

The bi-target functions are to maximise XM while decreasing tf. The target function 

is expressed to be of the form min function (to minimise). To maximise 
0 0

0

A A

A

C V C V
C V
−

, the 

max function is expressed as min 0 0

0

A A

A

C V C V
C V

 −
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. The solution volume in the final time, 

2L, served as the inequality constraint. The optimal control problem is mathematically 
formulated as Equation 17:
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0
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t
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≤ ∆ ≤
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      (Final inequality constraint) (17)

RESULTS AND DISCUSSION

The Pareto Front (PF) chosen, i.e., ε-constraint, as shown in Figure 3, is segregated into 
three zones. The lower end of the PF (zone 1) is denoted by a relatively short tf and a 
lower XM rate. The upper end of the PF (zone 3) is indicated by a relatively long tf and a 
high XM rate. Finally, zone 2, positioned between zones 1 and 3, is designated as having 
a medium tf and XM rate.

Each point of PF in Figure 3 is associated with a unique FR and TR profile. From 
Figures 4 to 6, ND points of A, B, and C, positioned in zones 1, 2, and 3, respectively, 
show a different trend of profiles. Table 2 shows the optimal control results for ND points 
A, B, and C, based on two reactor performances, regarded as tf and XM.

Table 2 explains that the tf for ND points A, B, and C is 46 min, 55 min, and 67 min, 
respectively. The XM for ND points A, B, and C is 0.994, 0.998, and 0.999, respectively. The 
variation in the conversion. i.e., 0.992 to 0.999 (Figure. 3: Pareto Front results) is significant 
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to be explored. The objectives obtained 
from PF show significant improvement of 
SOO results where the combination of tf 
and XM obtained was 80 min, 0.999 (for 
maximising XM problem) and 60 min, 
0.970 (for minimising tf problem) (Rohman 
et al., 2021b). Furthermore, the variation in 
the conversion. i.e., 0.992 to 0.999 (Figure 
3: Pareto Front results) is significant to 
be explored. It is because the profit value 
obtained from SOO results varied from 
RM/year 4.55x106 (maximise XM) to RM/
year 5.51 x106(minimise tf) (Rohman et al., 
2021b); thereby, the increment of 0.001 
XM with different tf will differ profit value 
significantly.

TR is a decision variable that has a 
prominent effect on tf and XM.  The reaction 

Figure 3. Pareto Front results 

Table 2
Final time and conversion in points A, B, and C

Non-dominated point A B C
Final time (tf, minutes) 46 55 67
Conversion (XM) 0.994 0.998 0.999

rates for the reactant, product, and catalyst escalated with elevating TR (Ubrich, 2000). As 
a result of the disparate TR profiles, the amount of tf and XM varies, as shown in Figures 
4b, 5b, and 6b. Due to the lowest value of the optimal profile of TR acquired, point A 
produced the shortest XM and tf, and vice versa for point C.

The optimal TR profiles (Figures 4b, 5b and 6b) and FR (Figures 4a, 5a and 6a) 
displayed a significantly different trend and complementary effect in promoting reaction 
rate. As the TR profile decreased in value, the FR profile equilibrated to sustain the reaction 
rate by raising the FR value. A higher FR of PA can induce the autocatalytic reaction, 

Figure 4. Optimal trajectories in point A: (a) Feed flowrate; and (b) Temperature
 (a)  (b)

Zone 1 Zone 2 Zone 3
-0.99

-0.992

-0.994

-0.996

-0.998

-1
45         50         55        60        65        70

Min (time, minutes)

M
in

 (-
co

nv
er

si
on

)

0          10          20         30          40          50
Time (min)

5

4

3

2

1

0

Fe
ed

 fl
ow

er
at

e 
(L

/s
)

×10–4

0         10         20         30        40         50
Time (min)

343

342.8

342.6

342.4

342.2

342

Te
m

pe
ra

tu
re

 (K
)



2679Pertanika J. Sci. & Technol. 30 (4): 2669 - 2681 (2022)

Optimal Control of Esterification Process Using CVP and HS

 (a)  (b)

Figure 5. Optimal trajectories in point B: (a) Feed flowrate; and (b) Temperature

 (a)  (b)

Figure 6. Optimal trajectories in point C: (a) Feed flowrate; and (b) Temperature
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thereby escalating the XM rate. Furthermore, the longer the tf , the less value of the FR. 
The usage of obtained PF provides the process analyst with several preferences for practical 
application, which refers to the trade-off between the capacity of ester production and 
optimal profiles extracted from PF. The increase of XM and the lessened tf leads to profit. 
However, the higher TR and FR yield a rise in energy consumption and material cost, 
respectively. Therefore, it is found that the ND point in zone II (point B) can be selected 
as the trade-off of the optimal TR and FR in this study. 

CONCLUSION

In a semi-batch reactor, the ester production process often has multiple performance targets, 
some conflicting with one another. For optimal control solver, the CVP and HS have been 
utilised. The ε -constraint has been performed to find PF solutions for the constrained 
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MOOC problem of minimising tf and maximising XM. Each ND points along the PF 
have a variation of optimal FR and TR profiles, resulting in various tf and XM values. The 
information contained within the PF enables the process analyst to examine the trade-offs 
between distinct target functions and to select an appropriate optimal strategy for the ester 
production. The critical study is that the optimal TR profile resulting from the chosen ND 
point becomes a pre-specified set point. Point B can be considered the most efficient of 
optimal TR and FR. The tracking controller then maintains the performance reactor in 
practice. The multi-objective optimisation study in terms of economic function can be 
considered a future study.
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